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e Macrophage subsets in tumors show distinct states and
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SUMMARY

The immune microenvironment of hepatocellular
carcinoma (HCC) is poorly characterized. Combining
two single-cell RNA sequencing technologies, we pro-
duced transcriptomes of CD45* immune cells for HCC
patients from five immune-relevant sites: tumor, adja-
centliver, hepatic lymph node (LN), blood, and ascites.
A cluster of LAMP3* dendritic cells (DCs) appeared
to be the mature form of conventional DCs and
possessed the potential to migrate from tumors to
LNs. LAMP3* DCs also expressed diverse immune-
relevant ligands and exhibited potential to regulate
multiple subtypes of lymphocytes. Of the macro-
phages in tumors that exhibited distinct transcrip-
tional states, tumor-associated macrophages (TAMs)
were associated with poor prognosis, and we estab-
lished the inflammatory role of SLC40A1 and GPNMB
in these cells. Further, myeloid and lymphoid cells in
ascites were predominantly linked to tumor and blood
origins, respectively. The dynamic properties of
diverse CD45" cell types revealed by this study add
new dimensions to the immune landscape of HCC.

INTRODUCTION

Liver cancer is the third leading cause of cancer-related mortality
in the world (Forner et al., 2018), and hepatocellular carcinoma

uuuuu

(HCC) accounts for approximately 90% of the incidence of all
liver cancers (Bray et al., 2018). Although treatments with sorafe-
nib and regorafenib lead to a modest survival benefit, overall
anti-tumor responses are still limited (Llovet et al., 2008; Ray,
2017). Although immunotherapies have clinical benefits for other
cancer indications, the response rates in HCC are much lower
(El-Khoueiry et al., 2017). Because parameters of the immune
contexture have been associated with treatment efficacy
(Gnjatic et al., 2017), it is important to characterize the baseline
HCC immune milieu to clarify the composition and property of
tumor-infiltrating immune cells in comparison with ones in other
immune-relevant anatomical compartments.

The cellular components of the tumor microenvironment (TME)
are highly complex, with diverse populations of myeloid cells and
lymphocytes playing important roles in inflammation, cancer im-
mune evasion, and responses to immunotherapy treatment
(Hackl et al., 2016; Ringelhan et al., 2018). The presence of
myeloid cells in the TME is often linked to altered patient survival
(Engblom et al., 2016). Tumor-associated macrophages (TAMs)
have been reported to prevent T cells from recognizing and
killing cancer cells (Peranzoni et al., 2018; Engblom et al.,
2016; Georgoudaki et al., 2016). Conventional dendritic cell
(DC) subsets (cDC1 and cDC2) have been reported to migrate
into tumor-draining LN and prime CD8* or CD4* T cells in mouse
models (Binnewies et al., 2019; Salmon et al., 2016). However,
the characteristics and functions of TAM and DC subsets in
HCC patients are still poorly understood. We have previously
characterized T cells in HCC by single-cell RNA sequencing
(scRNA-seq) (Zheng et al., 2017a), but the global immune land-
scape is still unknown. Recently, studies characterizing immune
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cell subsets of the TME have emerged, including mass cytome-
try studies (Chevrier et al., 2017; Lavin et al., 2017; Wagner et al.,
2019) and scRNA-seq studies on melanoma (Li et al., 2019;
Tirosh et al., 2016), non-small-cell lung carcinoma (Lambrechts
et al., 2018), breast carcinoma (Azizi et al., 2018), head and
neck cancer (Puram et al., 2017), colorectal cancer (Li et al.,
2017), and kidney cancer (Chung et al., 2017), paving the way
for such studies for HCC.

The scRNA-seq technologies in the aforementioned studies
were based on either SMART-seq2 (Picelli et al., 2014) or
droplet-based platforms (Zheng et al., 2017b). SMART-seq2
provides in-depth coverage for a smaller number of cells,
whereas the droplet-based platforms capture a larger scale of
cells but with the sacrifice of limited gene coverage (Ziegenhain
et al., 2017). Therefore, combined analysis of these two technol-
ogies may represent a preferred approach toward achieving an
in-depth understanding of the broad landscape. Here we com-
bined full-length and 3’ scRNA-seq technologies to obtain
high-quality data for a large collection of CD45" immune cells
from various tissues in HCC patients. For the first time, cell
composition, functional states, developmental trajectory, and
cellular interactions of immune cells in HCC tumors, adjacent
liver, hepatic lymph nodes (LNs), ascites, and blood were
explored and compared systematically. Specifically, previously
uncharacterized hepatic LNs and ascites were included to
dissect the dynamics of immune cells in HCC. Excess accumu-
lation of fluid in the peritoneal cavity, known as ascites (Biecker,
2011; Fukui et al., 2018), is associated with poor prognosis of
HCC (Hsu et al., 2013), but the roles of ascites in shaping the
tumor immune contexture are still unknown. The combination
of the two scRNA-seq technologies and the inclusion of LNs
and ascites allowed us to not only characterize the immune
composition of HCC with high resolution but also to trace their
dynamics.

RESULTS

High-Resolution Immune Landscape of HCC by
Integrated Analysis of Full-Length and 3' scRNA-Seq

To characterize the immune cells in HCC, we applied scRNA-seq
methods to study CD45* cells isolated from tumors and four
immune-relevant sites (adjacent liver, hepatic LNs, blood, and
ascites) of 16 treatment-naive liver cancer patients (Figures

S1A-S1C; Tables S1 and S2). For patient DSN09, both 10x
Genomics and SMART-seq2 methods were applied in parallel,
giving us the opportunity to evaluate the power of integrated
analysis on two types of datasets. Using graph-based clustering
(Traag et al., 2019) to analyze the cells from this patient, we iden-
tified 20 clusters for 10x data and 22 for SMART-seq?2 (Figure 1A).
Examination of canonical marker genes revealed major cell pop-
ulations, including T cells, natural killer (NK) cells, and diverse
myeloid-lineage cells in both platforms (Figures S1D and S1E),
demonstrating the stability and accuracy of our data. Minor
cell populations, though, varied between the two platforms.
For instance, the LAMP3* DC, CD14*, and FCGR3A* monocyte
groups were only identified in SMART-seqg2, whereas type 3
innate lymphoid cells (ILCs) were only captured by 10x (Fig-
ure 1A). In addition, we observed that SMART-seq2 could help
distinguish closely related clusters, possibly by capturing more
RNA molecules that contribute to cell type classification (Svens-
son et al., 2017). For instance, CD4* and CD8" T cell subtypes
(CD8*PDCD1*, CD8*GZMK*, and CD8*CX3CR1* clusters)
were readily separated. In contrast, 10x-based T cell clusters
were composed of a mixture of CD4* and CD8" T cells, as evi-
denced by their simultaneous similarities to those defined by
SMART-seq2 (Figure S2A). We then integrated the two types
of datasets using the Harmony algorithm (Korsunsky et al.,
2018). In total, 37 clusters were identified on the combined data-
set, with 36 containing cells from both 10x and SMART-seq2,
indicating a well-integrated dataset (Figure 2B). Clusters 16,
29, 33, 34, 35, and 36 were dominated by 10x, each containing
less than 10 cells from SMART-seq2 (Figure S2B), indicating
that such rare cell populations were “rescued” by 10x. On the
other hand, 129 individual cells initially in the CLEC9A* DCs of
10x clusters were re-assigned to LAMP3* DCs after integration,
confirmed by their gene expression (Figure S2C), suggesting that
the integration led to identification of rare cell populations that
were masked in either platform alone. We also observed
that the initial mixture of CD4*/CD8* T cells in 10x clusters
were subsequently separated after incorporation with SMART-
seg2 data (Figure S2B).

We then examined the gene detection sensitivity. At the clus-
ter level, the gene numbers (> 1 read) detected by SMART-seq2
were invariably more numerous than 10x and covered almost all
genes detected by 10x (Figure S2D). Saturation analysis re-
vealed that the detected gene number by SMART-seqg2 was

Figure 1. Landscape of CD45* Immune Cells in Liver Cancer

(A) Uniform Manifold Approximation and Projection (UMAP) of SMART-seq2-based (left) and 10x-based (right) single CD45™ cells from patient DSN09. The red
line represents 10x-specific cluster, and blue represents SMART-seq2-specific cluster.

(B) UMAP plot showing 37 clusters identified by integrated analysis, colored by cell cluster (top) or platform (bottom).

(C) Saturation curve showing the detected gene number of 10x (top) or SMART-seq2 (bottom). Each dot, colored by platform, represents the detected gene

number (y axis) with the given cell number (x axis).

(D) Boxplot showing the detected gene number in specific gene categories of LAMP3* DCs. Each dot represents an individual cell. p < 2e—16 in all boxplots,

Wilcoxon test.

(E) Dot plot showing the comparison of differentially expressed genes (LAMP3* DCs versus others, false discovery rate [FDR] < 0.01, log(fold change [FC]) > 0.5)
of LAMP3* DCs detected by 10x and SMART-seq2. The x axis and y axis show the log,(FC) of the detected genes in SMART-seq2 and 10x, respectively.

(F) Enriched GO terms of SMART-seq2- and 10x-specific genes generated in (E).

(G) UMAP projection showing the immune landscape of liver cancer, colored by cluster (left) and tissue (right).

(H) Tissue preference of each cluster estimated by Ro/e based on 10x data.
See also Figures S1, S2, S3, and S4 and Tables S1, S2, and S3.
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Cellular connection of ascites and other tissues
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Figure 2. Cellular Relationship of Ascites and Other Tissues
(A) Circos plot showing the proportion of ascites cells matched to cells in other tissues based on expression similarity analysis.

(B) Bar plot showing the cell fraction of lymphocytes and myeloid cells in ascites that aligned to different tissues. **p < 0.001, Wilcoxon test.

(C) Bar plot showing the cell fraction of subsets of lymphocytes and myeloid cells in ascites that aligned to different tissues. ***p < 0.001, Wilcoxon test.
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much higher than by 10x in all tissues. The gene capturing rate of
20 cells by SMART-seq2 was comparable with that of 1,000 cells
by 10x (Figure 1C). Immune-relevant gene categories were also
more frequently detected by SMART-seq2 than by 10x, exempli-
fied by LAMP3" DCs (p < 2e—16, Wilcoxon test) (Figure 1D). For
all cell clusters, SMART-seq?2 yielded many more differentially
expressed genes than 10x. For example, the number of differen-
tially expressed genes detected by the 15 SMART-seq?2 cells in
LAMP3* DCs (LAMP3* DCs versus other clusters) was 29 times
higher than that derived from 129 10x cells (Figure 1E). Notably,
transcription factors (TFs) associated with DC development,
including ZBTB46, were only detected by SMART-seq2 (Fig-
ure 1E). These genes also led to additional enriched Gene
Ontology (GO) terms. On average, 45 significant GO terms
were obtained by SMART-seqg2 versus 17 by 10x (p =
1.12e—7, Wilcoxon test) (Figure S2E). Specifically, for LAMP3*
DCs, in addition to the biological processes supported by both
platforms, SMART-seq2-specific genes also revealed the
enrichment of “cell-to-cell signaling” and “regulation of cell
migration,” providing insight into their potential function (Fig-
ure 1F). Taken together, we conclude that the incorporation of
SMART-seq?2 into the widely used 10x-based scRNA-seq study
has a synergistic effect on identifying immune cell types at a
higher resolution.

We then integrated the data from all patients, including 66,187
cells generated by 10x and 11,134 cells by SMART-seqg2, and
performed further analyses (Figure 1G). Clustering analysis re-
vealed major immune cell types in HCC, including T, NK,
myeloid, B, plasma B cells, and ILCs (Figures S3A and S3B). T,
NK, and myeloid cells were further partitioned through a second
round of clustering analysis and yielded 14, 9, and 14 clusters,
respectively (Figures S3D, S4A, and S4E).

The immune cell types exhibited different tissue preferences.
We quantified tissue enrichment based on the ratio of observed
to expected cell numbers in each cluster (Ro/e) using the 10x
data (Figure 1H and Table S3). Among T cells, CD4-c6-FOXP3
and CD8-c7-PDCD1, corresponding to regulatory T (Treg) cells
and exhausted CD8" T (Tex) cells, respectively, were enriched
in tumors, consistent with previous findings (Guo et al., 2018;
Zhang et al., 2018; Zheng et al., 2017a). CD8-c1-MKI67, repre-
senting proliferative T cells, was also enriched in tumors (Fig-
ure 1H). Using RNA velocity, a method inferring precursor-
progeny cell dynamics (La Manno et al., 2018), we observed a
clear directional flow from proliferative T cells to Tex cells (Fig-
ure S3E), consistent with a recent study of melanoma showing
that proliferation in CD8"* T cells was most profound during early
stages of dysfunction (Li et al., 2019). Tumor-enriched popula-
tions like Treg cells are consistently low in both autologous adja-
cent liver and “healthy liver” controls (Figure S3C; MacParland
et al., 2018). For NK cell clusters, NK-c3-IFNG, NK-c4-IFNG-

HSPA1A, NK-c7-CD160, and NK-c8-CD160-HSPA1A were
enriched in tumor compared with other tissues (Figure 1H).
Among them, IFNG* NK cells highly expressed circulating NK
(cNK) cell markers FCGR3A, CX3CR1, and the transcription fac-
tor T-bet (TBX21), whereas CD160" NK cells highly expressed
liver-resident NK (IrNK) cell marker CXCR6 and the transcription
factor EOMES (Figures S4B-S4D; Male, 2017; Peng and Sun,
2017), indicating the existence of both cNK cells and IrNK cells
in HCC. For myeloid cells, 2, 4, 6, and 2 clusters were identified
for monocytes, DCs, macrophages, and mast cells, respectively
(Figures S4E and S4F). M@-c5-VCAN, Me-c6-MARCO, and DC-
c2-FCER1A were dominantly enriched in ascites (Figure 1H). In
summary, by combined analysis of 10x and SMART-seq2
data, we identified multiple immune cell populations with distinct
distribution patterns in different tissues of HCC.

Lymphocytes and Myeloid Cells in Ascites Appear to
Have Distinct Origins
We investigated the potential origins of cells in ascites by expres-
sion alignment (see STAR Methods) to cells in other tissues with
the premise that immune cells in ascites were accumulated
from other tissues. We observed that lymphocytes significantly
resembled cells from blood, whereas myeloid cells mainly map-
ped to cells of tumors (Figure 2A). Overall, 50.2% (3,314 of
6,603), 24.9% (1,641 of 6,603), and 20.8% (1,375 of 6,603) lym-
phocytes were assigned to cells in blood, tumors, and adjacent
liver, respectively, whereas myeloid cells (79.5%; 2,613 of
3,286) were predominantly assigned to cells found in tumors (Fig-
ure 2B). In particular, the ascites-enriched clusters M¢-c5-VCAN
(p = 0.046, Fisher’s exact test) and M-c6-MARCO (p < 0.001)
were primarily mapped to tumor-derived cells. Two lymphocyte
subsets, NK-c9-MKI67 (p < 0.001) and CD8-c1-MKI67 (p <
0.001), also had their most similar cells in tumors (Figure 2C).
We then performed the reverse analysis to determine which
cell types in tumors had the tendency to accumulate in ascites.
Individual cells were labeled as ascites-similar or ascites-distant
cells based on whether the cells in the tumor could find their best
match in ascites. In myeloid cell subsets, Me-c1-THBS1 (p <
0.001, odds ratio = 0.63, Fisher’s exact test) exhibited the high-
est degree of accumulation in ascites, whereas M¢-C2-APOE
(p < 0.001, odds ratio = 0.38) tended to be persistent in tumors
(Figure 2D). For lymphocyte subsets, CD8-c1-MKI67, express-
ing cytotoxic genes (GZMK, GZMA, IFNG, and TNF), had a
higher tendency to accumulate in ascites (p < 0.001, odds ratio =
4.63) (Figure 2D). We identified clonal T cells in CD8-c1-MKI67,
sharing the identical T cell receptor (TCR) a-B pair, to span
across ascites and tumor (Figure S4G), supporting their migra-
tion process between tumors and ascites. We then performed
mitochondrial mutation-based lineage tracing following a
method using scRNA-seq data (Ludwig et al.,, 2019). The

(D) Odds ratios and p values based on ascites-similar and ascites-distant cells of tumor-enriched cell clusters. *p < 0.05, *p < 0.01, **p < 0.001, Fisher’s

exact test.

(E) Branches of phylogenetic trees of macrophages in different tissues constructed by mitochondrial mutations. Venn diagrams show several of the number of

stable lineages (bootstrap > 30).

(F) RNA velocity based on partition-based graph abstraction (PAGA) projection (Wolf et al., 2019), showing the transition potential from M¢-c1-THBS1 to

Me-c5-VCAN.
See also Figure S4 and S5.
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phylogenetic tree of MKI67" T cells also showed cells in tumor
and ascites with common lineages (Figure S4H). In contrast,
Treg cells (p < 0.001, odds ratio = 0.47) and CD4-c5-CXCL13
(p < 0.001, odds ratio = 0.35) were ascites-distant clusters and
more likely to be persistent in tumors (Figure 2D). It would be
interesting to investigate whether tumors would selectively retain
dysfunctional T cells while displacing proliferative cells to
ascites.

We next studied the relationship of macrophages in ascites
and other tissues. The phylogenetic tree based on mitochondrial
mutations revealed a number of macrophages in tumor and as-
cites sharing common lineages (Figure 2E). Further, RNA velocity
analysis revealed that tumor-enriched Mg-c1-THBS1 exhibited
lineage orientation to ascites-enriched Mo-c5-VCAN (Figure 2F).
We next isolated macrophages from different tissues of four
additional HCC patients, incubated them with the autologous
ascites supernatant, and profiled their transcriptomes. Such
incubation did not result in enhanced similarity with ascites mac-
rophages (Figure S5A). Altogether, our data support that specific
subsets of lymphocytes and macrophages in ascites could orig-
inate from the tumor.

Two Distinct States of Tumor-Enriched Macrophages

Six macrophage clusters were identified in our dataset, of which
Meo-c1-THBS1 and Me-c2-C1QA were enriched in tumor tissues
based on Ro/e (Figure 1H). Although genes upregulated in
Meo-c1-THBS1 were enriched for signatures of myeloid-derived
suppressor cells (MDSCs) (Condamine et al., 2016; Zhao et al.,
2012), those in Mg@-c2-C1QA simultaneously resembled the
signatures for TAMs and M1 and M2 macrophages (Lavin
et al., 2017; Figure 3B). The co-existence of M1 and M2 signa-
tures indicated that TAMs were more complex than the classical
M1/M2 model, consistent with a previous study (Azizi et al.,
2018). A diffusion map of their global transcriptomes showed
that Me-c1-THBS1 (MDSC-like macrophages) and M¢-c2-
C1QA (TAM-like macrophages) formed a continuum but with
distinct expression features (Figure 3D). Specifically, MDSC-
like cells highly expressed the S100A family genes FCN1 and
VCAN, whereas they expressed low levels of HLA-related genes
(Figure 3A). In contrast, TAM-like cells expressed a set of genes
found previously in TAMs of lung cancer (Lavin et al., 2017),
including APOE, C1QA, C1QB, and TREMZ2. In addition, two
additional genes, SLC40A1, encoding ferroportin, and GPNMB,
encoding type | transmembrane glycoprotein, were highly ex-

pressed in TAM-like cells (Figure 3A). The transcription factors
of these two clusters were distinct, with /D3, MITF, RUNX2,
and MAF preferentially expressed in TAM-like cells and BCL3,
NR4A1, RXRA, and TCF25 highly expressed in MDSC-like cells
(Figure 3C). We further performed multicolor immunohistochem-
istry (IHC) staining on tumor sections from HCC patients. Among
CD68" macrophages, mutually exclusive signals of S100A8 and
SLC40A1 were detected on distinct cells (Figure 3E), supporting
the presence of the two distinct macrophage states in HCC.

We then examined the association of gene signatures of
macrophage states with the prognosis of The Cancer Genome
Atlas (TCGA) liver hepatocellular carcinoma (LIHC). Only the
TAM-like signature was associated with a poor prognosis (p =
0.01, Cox regression). Two individual genes in the TAM-like
signature, SLC40A1 and GPNMB, were also associated with a
poor prognosis (p = 0.033 and 0.006, respectively) (Figure 3F).
To investigate the function of the two genes, we knocked out
SLC40A1 or GPNMB in THP-1 monocyte-derived macrophages
using the CRISPR-Cas9 system and confirmed the gene deletion
efficiency by flow cytometry (fluorescence-activated cell sorting
[FACS]) (Figure S5B). We stimulated unedited control, SLC40A1-
knockout (KO), GPNMB-KO, and VEGFA-KO THP-1 macro-
phages with lipopolysaccharide (LPS)+interferon y (IFNy) or
Pam3CSK4 and measured the production of pro/anti-inflamma-
tory cytokines. In comparison with the control, GPNMB-KO pro-
duced significantly lower amounts of tumor necrosis factor alpha
(TNF-) under both LPS+IFNy and Pam3CSK4 conditions (Fig-
ure S5C), indicating that GPNMB promotes TNF-o production
in macrophages. SLC40A1-KO secreted lower amounts of inter-
leukin-23 (IL-23), IL-6, and IL-12p40 but higher amounts of IL-1B
(Figure 3G), suggesting that SLC40A1 promoted pro-inflamma-
tory cytokines but suppressed the production of IL1p, a critical
regulator of inflammatory responses in the TME.

LAMP3* DCs: Mature DCs with Potential Migration
Capacity in Tumors

The primary function of DCs in cancer immunity is to acquire tu-
mor antigen, migrate to LNs, and activate a de novo T cell
response (Gardner and Ruffell, 2016; Roberts et al., 2016). We
focused on three DC subsets enriched in tumors: DC-c1-
CD1C, DC-c3-CLEC9A, and DC-c4-LAMP3 (Figure 1H). DC-
¢1-CD1C highly expressed CD1C, FCER1A, and CLEC10A, cor-
responding to cDC2, whereas DC-c3-CLEC9A highly expressed
CLEC9A, XCR1, and CADM1, representing cDC1 (Figure 4A;

Figure 3. Two Distinct States of Tumor-Enriched Macrophages

(A) Heatmap showing the signature gene expression of macrophage clusters. Rows represent signature genes. Columns represent individual cells.

(B) Gene enrichment for classical cell type M1, M2, MDSCs and TAMs in comparisons with the macrophage subsets in HCC. Bubble size represents the pro-
portion of upregulated and downregulated genes of clusters based on the gene signature on the y axis. The color of the circle represents the directional FDR. Red,
enrichment of upregulated genes in the specific cell subsets; blue, depletion of downregulated genes.

(C) Differentially expressed TFs in the two clusters based on SMART-seq2 (Wilcoxon test).

(D) Diffusion map showing the continuous connection of the two macrophage states (left) and signature gene expression based on 10x (right).

(E) Multicolor IHC staining to validate the two macrophage states, exemplified by patient DSN09. The dotted circle indicates the cell edge. The scale bars

represent 20 um.
(F) Overall survival curves of TCGA LIHC data (Cox regression).

(G) Bar plot showing the cytokine variation in SLC40A1-KO, GPNMB-KO, and VEGFA-KO THP-1 macrophages compared with the unedited control. *p < 0.05,

**p < 0.01, and **p < 0.001 (Student’s t test).
See also Figure S5.
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Figure 4. Characteristics and Relationships of DC Subsets

(A) Heatmap showing the gene expression of DCs in HCC based on SMART-seg2. Rows represent signature genes. Columns represent individual cells.

(B) Boxplot showing the signature gene expression of LAMP3* DCs based on SMART-seq2. Each dot represents a single cell.

(C) Expression consistency of the LAMP3* DCs in HCC with the hDC3 in lung cancer (Zilionis et al., 2019). Violin plot: expression of the hDC3 signature in DC
subsets in HCC. Venn plot: the number of overlapped signature genes for two datasets.

(D) RNA velocities are visualized on the diffusion map projection of DCs in HCC.

(E) UMAP plot showing the clusters of in vitro DCs. Each dot represents a single cell. Color represents cluster.

(F) Signature gene expression of in vitro DCs.

See also Figures S5 and S6 and Table S4.
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Villani et al., 2017). DC-c4-LAMP3 did not correspond to any
classical DC subset in vivo based on known markers (Table
S4). Cells in DC-c4-LAMP3 expressed the maturation markers
LAMP3, CD80, and CD83; the migration marker CCR7; and the
lymphocyte recirculation chemokines CCL79 and CCL21 (Fig-
ure 4B). To validate the existence of this population in vivo, we
performed FACS on five additional HCC patient samples.
CD11c*LAMP3* DCs were identified in tumors, expressing
higher CCR7 than cDCs (Figures S5D and S5E). The fraction of
LAMP3* DCs in tumors was higher than that in adjacent liver
(p = 0.0007, Student’s t test) (Figure S5F), consistent with our
scRNA-seq data. To examine whether LAMP3* DCs are present
in other cancer types, we compared the transcriptome of tumor-
infiltrating DCs in our dataset with the transcriptome data of
FACS-defined DC subsets infiltrated in breast tumors (Michea
et al., 2018). As expected, cDC1 and cDC2 in HCC tumors cor-
responded well with ones in breast cancer (Figure S5G).
Although LAMP3* DCs in HCC did not precisely correspond
with DC populations in breast cancer, genes highly expressed
in LAMP3* DCs were found in their cDC1, cDC2, and pDC sub-
sets (Figure S5@G), suggesting that all of these DC subsets could
contain LAMP3* DCs. Compared with the signature genes of
scRNA-seq data for lung cancer (Zilionis et al., 2019), we found
that LAMP3* DCs highly expressed signature genes derived
from the “activated DCs” in lung cancer (Figure 4C; Table S5).
Therefore, LAMP3" DCs appear to be present in multiple tumor
types and can be detected by scRNA-seq.

Because LAMP3 has been reported to be associated with DC
maturation under CD40L stimulation (de Saint-Vis et al., 1998),
we further examined the relationship between LAMP3* DCs
and other DC subsets. Naive primary cDC1, cDC2, and pDCs
in blood did not express LAMP3 (Figure S6A). However, upon
in vitro stimulation of LPS+IFNvy or poly I:C, all three DC subsets
upregulated CD83 and LAMPS3 (Figure S6B). In vitro monocyte-
derived DCs (mo-DCs) also upregulated CD83 and LAMP3
upon receiving the maturation stimulus CD40L or LPS. In
contrast, incubation with vitamin D, a maturation inhibitor (Mala-
guarnera et al., 2017; Penna and Adorini, 2000), suppressed
CD83 and LAMP3 on mo-DCs (Figure S6C). We then performed
scRNA-seq on DCs before and after in vitro stimulation to char-
acterize transcriptomic changes of DC subsets during formation
of LAMP3* DCs. These DCs could be divided into 10 populations
(Figure 4E). Among them, C02 and C03 were identified as cDC2,
C01 and C04 as pDCs, and C08 as LAMP3* DCs. We also iden-
tified CO5 as a newly defined cDC subset, AS-DC (AXL*DAB2*)
(Guilliams et al., 2016; See et al., 2017; Villani et al., 2017; Figures
4F and S6D). LAMP3* DCs comprised a larger population in
samples treated with LPS+IFNy and poly I:C in comparison
with untreated samples (Figures 5A-5C), confirming that matura-
tion stimuli induced LAMP3* DCs. Although the number of cDC1
was too small to form a distinct cluster, we examined the exis-
tence of cDC1 based on the high expression of XCR1, CLEC9A,
and CADM1 and observed an increased LAMP3 level after poly
I:C or LPS+IFNy treatment (Figure S6E). In addition, we found
three clusters enriched in the treated samples. C07, correspond-
ing to the transitional stage between cDC2 to LAMP3* DCs, was
more prominent in poly-1:C-treated samples, whereas C09 and
C10, corresponding to the transitional stage between pDCs

and LAMP3* DCs, were more prominent in LPS-treated samples
(Figures 5A and 5C). Altogether, these data indicate that LAMP3
expression is a maturation marker of multiple DC subsets.

To further examine the lineage relationship of LAMP3* DCs
with other DC subsets, we performed RNA velocity analysis of
DC subsets in HCC and observed that 1.5% (22 of 1,465)
cDC1 and 0.98% (4 of 410) cDC2 had the potential to transit
to LAMP3* DCs (Figure 4D), suggesting that LAMP3* DCs in
tumors may originate from both cDC1 and cDC2. For in vitro
DC subsets after stimulation, RNA velocity analysis showed
that cells in transitional stages (CO7 and CO09) exhibited a
strong directional flow toward LAMP3* DCs (Figure 5D), indi-
cating that in vitro maturation stimuli induce LAMP3* DC
differentiation from cDCs and pDCs but not AS-DCs. There-
fore, both in vivo and in vitro results demonstrated that
different primary DC subsets had the potential to become
LAMP3* DCs. We then compared the global transcriptome
of DCs in vitro and in HCC using Spearman correlation. The
LAMP3* DCs generated in vitro and those in HCC exhibited
the highest correlation coefficient (Figure 5E) and shared
expression of genes, including CCR7, CCL19, FSCN1, and
CD40 (Figure 5F).

We next examined DC migration potential in HCC using
signature genes derived from mouse tissue-migratory cDCs
(Miller et al., 2012; Table S5). In comparison with cDC1 and
cDC2, LAMP3* DCs exhibited the highest “migration score”
(Figure 6A). Using a Transwell migration assay (Figure S6F),
we showed that mo-DCs matured with either CD40L+PGE2 or
a commercial DC maturation supplement resulted in an
increased level of LAMP3, and these matured DCs migrated
more readily than immature DCs toward CCL19 (Figures 6B,
S6G, and S6H). Conversely, DCs treated with vitamin D failed
to migrate (Figure 6B). To test the migration capacity and poten-
tial direction of LAMP3* DCs in HCC, we traced the lineage
origins of LAMP3* DCs in different tissues by analyzing the
mitochondrial mutations. The phylogenetic tree of LAMP3*
DCs constructed based on mitochondrial mutations of patient
DSNO09 identified a small number of cells sharing common line-
ages in LNs and tumors, more abundant than between other tis-
sues (Figures 6C and 6D). We also performed RNA velocity
analysis to examine the migration direction and observed that
cDC1 and cDC2 did not show a clear directional flow between
tumors and LNs (Figure 6E). In contrast, within LAMP3* DCs,
tumor-derived cells exhibited a directional flow toward those
in LNs, with a significantly higher tendency than c¢DC1 and
cDC2 (p = 4.08e—06, odds ratio = 3.03) (Figure 6F), further sup-
porting the potential migration direction. Altogether, we identi-
fied LAMP3* DCs in HCC with maturation features. These
DCs may originate from cDC1 and cDC2 and exhibit migration
capacity toward LNs.

Interaction Relationship of DCs and Lymphocytes

To investigate the interactions between myeloid cells and lym-
phocytes, we utilized a set of immune-related ligand-receptor
(L-R) pairs (Chen and Flies, 2013; Ramilowski et al., 2015;
Vento-Tormo et al., 2018) to gain insights into the regulatory re-
lationships among cell clusters. Focusing on cells from tumors,
we predicted 97 L-R pairs to mediate interactions between 625
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See also Figure S6.
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Figure 6. Migration Capacity of LAMP3* DCs

(A) Violin plot showing the migration score of DC subsets in HCC (Student’s t test).

(B) Bar plot showing the high migration capacity of mature DCs in vitro, based on a Transwell assay (left), that highly expressed LAMP3 (right). *p < 0.05, *p < 0.01,
and *p < 0.001 (Student’s t test).

(C) Branches of the LAMP3* DCs mitochondrial phylogenetic tree of patient DSN09.

(D) Venn plot showing the stable lineages (bootstrap > 30) in tumors and LNs. The lineage relationship reviewed by phylogenetic trees does not reflect the degree
of proliferation The bar plot shows the number of lineages shared in different tissues.

(E) RNA velocities are visualized on the UMAP projection of in vitro DCs using Gaussian smoothing on a regular grid.

(F) LAMP3* DCs in tumors show a high ratio of RNA velocity links from tumors to LNs (Fisher’s exact test).

See also Figure S6 and Table S5.

pairs of cell clusters (Table S6). The SMART-seq2 datarevealed of DCs and T cells as immune regulators, DCs harbored the
more potential L-R pairs because of the higher gene detection  highest ligand numbers, with LAMP3* DCs, cDC2, and cDC1
sensitivity (Figures 7A and S7A). In line with the important roles  harboring 114, 82, and 82, respectively. T cells harbored the
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highest receptor numbers in lymphocytes, with Tex cells, CD4-
c5-CXCL13, Treg cells, and proliferative T cells harboring 83,
83, 79, and 65, respectively (Figures 7A and 7B).

All three tumor-enriched DC subsets showed strong potential
interaction with Tex cells, proliferative T cells, and Treg cells via
the co-stimulator CD28/B7 family (CD86-CD28, CD86-CTLA4,
ICOSLG-CD28, and ICOLG-CTLA4), and interleukin-15 (IL-15-
IL-2RB and IL-15-IL-2RG) (Figure S7B; Table S6). LAMP3* DCs
exhibited the highest ligand numbers among the three DC sub-
sets, and the L-R numbers of LAMP3* DCs with T cell subsets
were higher than ¢cDC1 and ¢DC2 (Figure 7C). LAMP3* DCs
were predicted to interact with CD4* T cells (CD4-c3-IL-7R,
CD4-c5-CXCL13, and CD4-c6-FOXP3) via the CCL19-CCR7
and CCL22-CCR4 axes, suggesting that LAMP3* DCs attracted
T cells via migration chemokines (Figure S7B). LAMP3* DCs high-
ly expressed CD274 (PD-L1) and PDCD1LG2 (PD-L2) and were
predicted to bind to PDCD1 (PD-1) on central memory T cells
(CD4-c3-IL-7R and CD4-c4-TCF7), effector memory T cells
(CD8-c4-SELL and CD8-c5-GZMK), Tex cells, Treg cells, and pro-
liferative T cells (Figures 7E and S7B), suggesting that LAMP3*
DCs may employ the CD274/PDCD1LG2-PDCD1 axis to regulate
multiple types of T cells. Multicolor IHC staining of HCC tumors
also showed the physical juxtaposition of PD-1-expressing
T cells (CD3*CD4" or CD3"CD8*) and PD-L1-expressing
LAMP3* DCs (CD80*) (Figures 7F and S7D). Based on analysis
of 366 TCGA HCC patients, the LAMP3" DC gene signature
showed a modest correlation with cytotoxic T cells (R = 0.26,
p < 1e—07, Pearson’s correlation) but strong correlations with
Tex cells (R = 0.51, p < 2.2e—16) and Treg cells (R = 0.44, p <
2.2e—16) (Figures 7D and S7C). Altogether, our data demonstrate
that LAMP3* DCs could regulate multiple T cell subsets in HCC
tumors via various L-R pairs, including PD-1/PD-L1, and are
more likely associated with dysfunction of T cells.

LAMP3* DCs were also predicted to interact with NK cells via
IL15 and NECTIN2 (Table S6). NECTIN2 encodes a membrane
ligand, NECTIN, whose interaction with CD226 confers an acti-
vating signal but with TIGIT confers an inhibitory signal (Chen
and Flies, 2013). Interestingly, LAMP3* DCs were predicted to
interact with cNK cells via NECTIN2-CD226 but with IrNK cells
via NECTIN2-TIGIT (Figure 7G). This suggests that LAMP3* DCs
might regulate distinct NK cell subsets toward opposite directions.

DISCUSSION

Advanced cancer is a systemic disease, and the dynamic
response of the immune system at different sites in cancer

remains to be completely deciphered. Here we generated tran-
scriptome data by the combination of 10x Genomics and
SMART-seq2, covering more than 75,000 individual CD45* cells
of 16 liver cancer patients from multiple immune-relevant tissue
sites, providing a rich resource for understanding multi-dimen-
sional characterization of immune cells in HCC. Transcriptome
profiling, when augmented by analyses of RNA velocity, mito-
chondrial mutation-based lineage tracing, and L-R based
cell-cell interaction, can lead to a far more dynamic picture, illus-
trating how various myeloid cells develop within the tumor,
cross-talk with lymphocytes, and migrate to LNs or ascites.
Macrophages in tumors have been studied in lung cancer and
breast cancer using scRNA-seq data (Azizi et al., 2018; Lavin
et al., 2017). Here we identified two distinct macrophage states
enriched in HCC tumor tissues. TAM-like macrophages in HCC
highly resemble the TAMs identified in lung cancer (Lavin et al.,
2017), and enrichment of TAM gene signatures is significantly
associated with a survival disadvantage in both LIHC and lung
cancer, suggesting this type of tumor-infiltrating TAMs as a po-
tential cellular candidate for therapeutic targeting in multiple
types of cancers. TAM-like macrophages in HCC tumors highly
express two marker genes, SLC40A1 and GPNMB. SLC40A1
encodes ferroportin, an iron exporter, and regulates TLR-stim-
ulus-induced pro-inflammatory cytokines, including IL-6, IL-23,
and IL-1B, consistent with recent findings of iron metabolism in
a polarizing macrophage phenotype in the TME (Mertens et al.,
2017; Mora et al., 2019). Based on our observations, we hypoth-
esize that iron metabolism is involved in shaping innate immunity
in the TME, but the mechanistic details need further study.
Although much attention has been focused on cDCs (Azizi
et al., 2018; Cheuvrier et al., 2017; Lavin et al., 2017), we found
that LAMP3* DCs possess multiple interesting characteristics.
First, LAMP3* DCs in tumors appear to be the most active im-
mune-regulators of lymphocytes because they express the high-
est number of ligands to interact with receptors expressed on
T cells and NK cells. It is intriguing that analysis of TCGA data
indicates a strong correlation between the LAMP3* DC signature
and the Tex or Treg cell signature in LIHC. This contrasts with the
well-established functions of mature DCs in priming and
activating T cells, implying that DCs in the TME, despite their
maturation features, might be related to T cell dysfunction, a
mechanism by which a tumor co-opts its environment to evade
immune surveillance. Second, LAMP3* DCs are capable of
migrating from tumors to hepatic LNs, as evidenced from the
same lineages shared by LAMP3* DCs in tumors and LNs, as
well as the precursor-progeny relationship supported by RNA

Figure 7. L-R-Based Interaction of DCs and Lymphocytes

(A) The number of ligands and receptors involved in significant L-R pairs of SMART-seq2.

(B) The interactions of DC and T cell clusters in tumors. DCs are filled in red and T cells in yellow. The ligands of DC-c4-LAMPS3 are filled in red and others in gray.
The arrow width is the sum of interaction values between two clusters. L-R pairs with a value > 10 and p < 0.01 are shown.

(C) The number of L-R pairs from DC to T cell subsets. Pairs with value > 10 and p < 0.01 were counted.

D) Correlation of the LAMP3* DC signature with Tex or Treg cells based on TCGA LIHC data, normalized by CD45 expression. Each dot represents a patient

Pearson’s correlation analysis).

F) Multicolor IHC staining of PD-L1 and PD-1 expression in LAMP3* DCs and T cells, exemplified by patient DSN09. The scale bar represents 30 pm.

(
(
(E) The predicted interactions mediated by CD274-PDCD1.
(
(

G) The predicted interactions mediated by NECTIN2-CD226/TIGIT.
See also Figure S7 and Table S6.
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velocity. Further supported by the observation that cells in CD8-
¢3-CX3CR1 and CD8-c5-GZMK in LNs share the same TCR with
T cells in tumor or adjacent liver tissues (Figure S6l), it appears
that LAMP3* DCs could migrate from tumors to LNs and prime
T cell migration to tumors to exert effector functions. Importantly,
we found that LAMP3* DCs exist not only in HCC but also in
breast cancer and lung cancer (Figures 4C and S5G; Michea
et al., 2018; Zilionis et al., 2019). Altogether, LAMP3* DCs may
represent a common DC subset in tumors, arising from cDCs
through maturation, with a unique capacity to regulate lympho-
cytes in the TME through cross-talk and migrate to LNs, corre-
lating with dysfunctional T cells.

Analyses of multiple tissues in combination with computa-
tional lineage tracing reveals potential migration patterns of tu-
mor-infiltrating immune cells to other sites, implying that the
cellular TME may shape the immune response of distant sites.
Our analyses demonstrate that tumor-infiltrating LAMP3* DCs
can migrate or home to the hepatic LNs. A disease-related
function of the hepatic artery LNs is not completely surprising
because this LN station is known to be involved in liver-related
immune pathology such as hepatitis B and C (Soresi et al.,
2003) and primary biliary cirrhosis (Sadamoto et al., 1998).
Although it is not a predominant site for malignant cell metas-
tasis (Yuki et al., 1990; Zeng et al., 2005), hepatic artery LNs
can serve as one of the draining LNs for tumor-associated
DCs in HCC based on our data. We also described the cellular
relationship of tumors and ascites in HCC for the first time. We
found that ascites of the HCC is a unique tissue type that har-
bors multiple myeloid cells and lymphocytes from tumors. The
myeloid cells include M¢-c5-VCAN, M¢-c6-MARCO, and DC-
c2-FCER1A. In contrast, cDC1 appears to be tumor resident,
whereas LAMP3* DCs migrate from tumors to LNs but not to
ascites. Ascites also harbors lymphoid cells, including CD8-
c1-MKI67 and NK-c9-MKI67, which implies a potential tumor
immunosuppression process with the retention of Tex and
Treg cells within tumors while allowing proliferative T cells,
with high granzyme expression, to migrate outside of the tu-
mor. Such a possibility will need further study. The clinical rele-
vance of this finding needs to be addressed, correlating the
phenotype of ascites-derived immune cells with the occur-
rence of ascites or survival of the patients. Because performing
paracentesis to obtain ascites fluid is far simpler and safer than
performing repeat liver biopsies, the potential use of ascites-
derived myeloid cells as HCC biomarkers should be further
explored.

In summary, our comprehensive characterization of immune
cells from different tissue sites reveals the dynamic nature of
immune cells in the cancer setting. Our analysis uncovers dif-
ferential lineage and migratory relationships of myeloid and
lymphoid cells in the TME, LNs, and ascites. To facilitate
use of our data for the wide research community, we devel-
oped an interactive web-based tool (http://cancer-pku.
cn:3838/HCC/) for analyzing and visualizing our single-cell
data for one or multiple user input genes. Our data can be a
valuable resource for further investigation to gain deeper bio-
logical insights that will lead to novel therapeutic targets and
biomarkers of response for current immunotherapies for liver
cancer.
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STARXxMETHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER
Antibodies

Anti-Human CD45 FITC (FACS) eBioscience Cat #11-0459-42
Anti-Human CD3 eFlour 450 (FACS) eBioscience Cat #48-0037-41
Anti-Human CD4 FITC (FACS) eBioscience Cat #11-0048-41
Anti-Human CD8a APC (FACS) eBioscience Cat #17-0086-41
Anti-Human CD25 PE (FACS) eBioscience Cat #12-0259-42
Anti-Human CD68 PE-eFlour 610 (FACS) eBioscience Cat #61-0689-42
7-AAD Viability Staining Solution (FACS) eBioscience Cat #00-6993-50
Anti-CD68 antibody (IHC) Abcam Cat #ab213363
Anti-SLC40A1 antibody (IHC) Abcam Cat #ab78066
Anti-S100A8 antibody (IHC) Abcam Cat #22506
Anti-CD80 antibody (IHC) Abcam Cat #ab134120
Anti-CD3 antibody (IHC) Abcam Cat #ab11089
Anti-CD4 antibody (IHC) Abcam Cat #ab133616
Anti-CD8 antibody (IHC) Abcam Cat #ab17147
Anti-PD1 antibody (IHC) Abcam Cat #ab137132
Anti-PD-L1 antibody (IHC) Abcam Cat #ab213524
BUV737-CD45RA (FACS) BD Biosciences Cat #612846
BV421-CD303 (FACS) Biolegend Cat #354212
BV510-CD123 (FACS) Biolegend Cat #306022
BV786 HLA-DR (FACS) BioLegend Cat #307642
BV650 CD3 (FACS) Biolegend Cat #317324
BV650 CD16 (FACS) Biolegend Cat #302042
BV650 CD19 (FACS) Biolegend Cat #302238
BV650 CD56 (FACS) Biolegend Cat #318343
BV711 CD141 (FACS) BD Biosciences Cat #563155
FITC CD14 (FACS) Biolegend Cat #325603
PerCP-Cy5.5 CD83 (FACS) Biolegend Cat #305320
APC CLEC9A (FACS) Biolegend Cat #353805
PE-dazzle CD45 (FACS) Biolegend Cat #304051
PE-Cy7 CCR7 (FACS) Biolegend Cat #353225
Clec9A (FACS) Biolegend Cat #353804
PE-dazzle CD45 (FACS) Biolegend Cat #304051
APC-Cy7 CD1c (FACS) Biolegend Cat #331520
CD83 PE-Cy7 (Lin) (FACS) BD Biosciences Cat #557749
CD14 PE- Cy7 (Lin) (FACS) BD Biosciences Cat #561385
CD16 PE-Cy7 (Lin) (FACS) BD Biosciences Cat #560716
CD19 PE-Cy7 (Lin) (FACS) BD Biosciences Cat #557835
CD20 PE-Cy7 (Lin) (FACS) BD Biosciences Cat #560735
CD56 PE-Cy 7 (Lin) (FACS) BD Biosciences Cat #557747
HLA-DR APC (FACS) BD Biosciences Cat #560744
CD123 BV605 (FACS) BD Biosciences Cat #564197
CD11c BUV395 (FACS) BD Biosciences Cat #563787
CD141 BB515 (FACS) BD Biosciences Cat #565084
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

CD1c AF700 (FACS) Biolegend Cat #331530
DC-LAMP PE (FACS) BD Biosciences Cat #558126
Isotype Control PE (FACS) BD Biosciences Cat #555749
CD83-APC-Cy7 (FACS) Biolegend Cat #305339
Anti-SLC40A1 (FACS) Novus Cat #NBP2-75923F

Anti-GPNMB (FACS)

Thermo Fisher

Cat #12-9838-42

Anti-VEGFA (FACS) BD Biosciences Cat #555036
Anti-mouse IgG-AF488 (FACS) Biolegend Cat #405319
Biological Samples

Human monocyte TPH1 cell ATCC® TIB-202

Critical Commercial Assays

Tumor Dissociation Kit human
Fixation/Permeabilization Solution Kit

SureSelectXT Target Enrichment System for lllumina
Paired-End Multiplexed Sequencing Library Kit

TruePrep DNA Library Prep Kit V2 for lllumina
Chromium Single Cell 3’ Library and Bead kit
Chromium Single Cell 3’ Chip Kit v2
Chromium i7 Multiplex Kit

Miltenyi Biotec
BD Biosciences
Aglient

Vazyme Biotech
10x Genomics
10x Genomics
10x Genomics

Cat #130-095-929
Cat #554714
Cat #G9701

Cat #TD503

Cat #PN-120237
Cat #PN-120236
Cat #PN-120262

Hiseq 3000/4000 SBS kit lllunima Cat #FC-410-1003
Hiseq 3000/4000 PE cluster kit lllunima Cat #PE-410-1001
Deposited Data

Data files for single-cell RNA sequencing (raw data) This paper HRAO000069

Data files for single-cell RNA sequencing (processed data) This paper EGA S00001003449
Data files for bulk RNA sequencing (processed data) This paper EGA S00001003449
Data files for bulk exome sequencing (processed data) This paper EGA S00001003449
Oligonucleotides

Primer: GAPDH Forward: TTGGCTACAGCAACAGGGTG This paper N/A

Primer: GAPDH Reverse: TCTACATGGCAACTGTGAGGAG This paper N/A

GPNMB sgRNA1: ATGAAAGACCTTCTGCTTACATGAGGGAGC This paper N/A

GPNMB sgRNA2: CACTGCGAAACCTTACCTAAAGAAGGGGTG This paper N/A

SLC40A1 sgRNA1: ACAGAATGTTTCAGTCATCCTGTGTGGAAT This paper N/A

SLC40A1 sgRNA2: AGAGCAGAACGTACTCCACGCACATGGATA This paper N/A

Software and Algorithms

Scater

Scran
Scanpy v1.4
Harmony
DropletUtils
Scvelo
Kallisto v0.44
Velocyto.py
RAXML v8.0

Cellranger v2.3

McCarthy et al., 2017
Lun et al., 2016
Wolf et al., 2018
Korsunsky et al., 2018
Lun et al., 2019

Bray et al., 2016
La Manno et al., 2018
Stamatakis, 2014

10x Genomics

https://github.com/davismcc/scater
https://github.com/MarionLab/scran
https://github.com/theislab/scanpy.git
https://github.com/pardeike/Harmony
https://github.com/MarioniLab/DropletUtils
https://github.com/theislab/scvelo
https://pachterlab.github.io/kallisto
https://github.com/velocyto-team/velocyto.py

https://cme.h-its.org/exelixis/web/software/
raxml/index.html

https://support.10xgenomics.com/single-
cell-gene-expression/software/pipelines/
latest/ahta-is-cell-ranger
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LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, Zemin
Zhang (zemin@pku.edu.cn).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Specimens

Sixteen patients who were pathologically diagnosed with liver cancer, including thirteen males and three females, were enrolled in
this study after approved by the Ethics Committee of Beijing Shijitan Hospital, Capital Medical University. The samples of six of the
patients (P1202, P0407, P0205, P0508, P0322 and P1116) were collected and analyzed in our previous study (Zheng et al., 2017a). All
patients in this study provided written informed consent for sample collection and data analyses. Their ages ranged from 26 to 84,
with a median age of 55. Patient DSD15 was pathologically diagnosed with intrahepatic cholangiocarcinoma (ICC), while other fifteen
patients were diagnosed with hepatocellular carcinoma (HCC). Twelve of the patients were HBV-positive based on the HBsAg test.
None of the patients was treated with chemotherapy or radiation prior to tumor resection. The stages of these patients were classified
according to the guidance of AJCC version 8. Among all the patients, four were diagnosed as stage |, six as stage Il, four as stage lll
and two as stage IV. The available clinical characteristics of these patients are summarized in Table S1. Their peripheral blood, tu-
mors, adjacent liver tissues, lymph nodes (common hepatic artery lymph nodes) and ascites were obtained for the subsequent im-
mune cell isolation. Tumor tissues were dissected about 2 cm from tumor edge, while the adjacent liver tissues were at least 2 cm
from the matched tumors. For patients DEJ08, DEJ10 and DEJ16, because of the large tumor size, we collected two spatial sites
within one tumor, with one site close to the tumor edge and thus labeled as tumor-edge and the other close to tumor core and labeled
as tumor-core.

METHOD DETAILS

Sample collection and single cell processing
Fresh tumor, adjacent liver tissue and lymph node samples were cut into approximately 1 mm?® pieces in the RPMI-1640 medium
(Invitrogen) with 10% fetal bovine serum (FBS; Sciencell), and enzymatically digested with MACS tumor dissociation kit (Miltenyi
Biotec) for 30 min on a rotor at 37°C, according to the manufacturer’s instructions. After filtered by 70 um Cell-Strainer (BD) in the
RPMI-1640 medium (Invitrogen), the suspended cells were centrifuged at 400 g for 5 min. After removing the supernatant, the
pelleted cells were suspended in red blood cell lysis buffer (Solarbio) and incubated on ice for 2 min to lyse red blood cells. The
cell pellets were re-suspended in sorting buffer (PBS supplemented with 2% FBS) after washing twice with PBS (Invitrogen).
Peripheral blood mononuclear cells (PBMCs) and ascites were isolated using HISTOPAQUE-1077 (Sigma-Aldrich) solution as
previously described (Zheng et al., 2017a). Briefly, 5 mL fresh peripheral blood or ascites was collected prior to surgery in EDTA
anticoagulant tubes and subsequently layered onto HISTOPAQUE-1077. After centrifugation, immune cells remained at the
plasma-HISTOPAQUE-1077 interface and were transferred to a new tube, with twice washing using PBS. These immune cells
were re-suspended with sorting buffer.

Flow cytometry of primary PBMC

Human PBMC was obtained after ficoll centrifugation. 1-2 million cells were stained with zombie yellow (Biolegend Cat# 423103)
according to the manual. After blocking with Fc Receptor Blocking Solution (Biolegend Cat# 422301), cell surface staining was per-
formed in FACS buffer containing antibody cocktails (CD45, CD11c, CD45RA, CD1c, CD141, CLEC9A, CD123, CD303, CCR7, CD83,
HLA-DR, CD3, CD19, CD56, CD16, CD14) on ice for 1 hour. After washing twice with FACS buffer, the cells were fixed using BD
Cytofix/cytoperm solution (BD Bioscience Cat# 554722) 20 min on ice. Cells were washed with BD perm/wash buffer (BD Bioscience
Cat# 554723), intracellular blocking with mouse IgG and Miltenyi FcR blocking, then intracellular staining was performed using PE-
anti-LAMP3 (BD Biosciences Cat# 558126), or PE-isotype control (BD Biosciences Cat# 555749) for 1 hour on ice. Cells were washed
twice with perm/wash buffer and then analyzed on the BD Fortessa.

In vitro stimulation of DC subsets
Fresh blood was obtained from healthy volunteers. PBMCs were isolated from heparinized fresh blood by standard density gradient
centrifugation with Ficoll-Paque Plus (GE Healthcare). Subsequently, Pan-DCs were obtained by negative selection using Human
Pan-DC pre-enrichment kit (Stemcell technologies). DCs were cultured in CellGenix GMP DC medium (CellGenix), and stimulated
with LPS-EB Ultrapure (Invivogen) and INF-y (Peprtotech); both at 100 ng/ml or with Poly I:C (Invivogen) at 1ug/ml. The cells were
analyzed 20 hour and 12 hour post stimulation for FACS and scRNA-seq respectively. Prior to scRNA-seq, the dead cells were
removed using dead cell removal kit (Miltenyi).

For membrane staining, cells (2 x 10°) were incubated with conjugated mAbs for 30 min at 4°C. For intracellular staining, Fixation/
Permeabilization Solution Kit (BD Biosciences) was used. Intracellular staining was performed as per manufacturer’s protocol.
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Briefly, the cells were fixed with fixation solution for 20 min at 4°C. The cells were then incubated with conjugated antibody or respec-
tive isotype control for 1 hour at 4°C. FACS analyses were performed using LSRFortessa (Becton Dickinson).

For flow cytometry analyses, the following mAbs were used: SP34-2 (CD3-PE-Cy7), M5E2 (CD14-PE-Cy7), 3G8 (CD16-PE-Cy?7),
SJ25C1 (CD19-PE-Cy7), 2H7 (CD20-PE-Cy7), B159 (CD56-PE-Cy7), G46-6 (HLA-DR-APC), 7G3 (CD123-BV605), B-ly6 (CD11c-
BUV395), 1A4 (CD141-BB515), 110-1112 (CD208-PE) were purchased from BD Biosciences. L161 (CD1c-AF700) was purchased
from Biolegend.

Single cell RNA-seq process for patients

Based on FACS analysis, single CD45" cells (anti-human CD45, HI30, eBiocience) of the samples of patients DSF22, DSF27, DSM22,
DSM27, DSA12, DSN09, DSD15, DEJ08, DEJ10 and DEJ16 were sorted into 1.5 mL low binding tubes (Eppendorf) with 50 mL sorting
buffer for droplet-based scRNA-seq, or into wells of 96-well plates (Axygen) for plated-based scRNA-seq, prepared with lysis buffer
which contained 1 uL 10 mM dNTP mix (Fermentas), 1 uL 10 uM Oligo dT primer, 1.9 pL 1% Triton X-100 (Sigma) plus 0.1 pL 40 U/pl
RNase Inhibitor (Takara). The sealed plates were stored frozen at —80°C.

For droplet-based scRNA-seq, single cells were processed through the GemCode Single Cell Platform using the GemCode Gel
Bead, Chip and Library Kits (10x Genomics, Pleasanton) as per the manufacturer’s protocol (Zheng et al., 2017a). The loaded cell
numbers of DSN09, DSD15, DEJ08 and DEJ10 were 10,000 for each sample, and the cell numbers of DEJ16 was 5,000 (Table
S2). The cells were then partitioned into Gel Beads in Emulsion in the GemCode instrument, where cell lysis and barcoded reverse
transcription of RNA occurred, followed by amplification, shearing and 3’ adaptor and sample index attachment. Libraries were
sequenced on an lllumina Hiseq 4000. The cost per cell was ~$3, including reagents and sequencing.

For plated-based scRNA-seq, reverse transcription and transcriptome amplifications were performed following SMART-seqg2 pro-
tocol. The amplified cDNA products were purified with 1x Agencourt XP DNA beads (Beckman), Following the first round of beads
purification, the cDNA of each single cell was quantified with gPCR of GAPDH, and fragment analysis (using fragment analyzer AATI).
The DNA products with high quality were further cleaned with 0.5x Agencourt XP DNA beads (Beckman) to eliminate short fragments
(less than 500 bp). The concentration of each sample was then quantified with Qubit HsDNA kits (Invitrogen). The libraries were con-
structed with the TruePrep DNA Library Prep Kit V2 for lllumina (Vazyme Biotech). Constructed libraries were analyzed by an lllumina
Hiseq 4000 with 150 bp paired-end reads. The cost per cell was ~$60, including reagents and sequencing.

Single cell RNA-seq process for in vitro DCs

Cells were centrifuged, resuspended in HBSS/0.04% BSA buffer and washed twice. Cells were then filtered by a 30 um cell strainer
and stored on ice while awaiting processing. Viability (> 95%), concentration and aggregate ratio (< 3%) were determined using the
NucleoCounter NC-200 (ChemoMetec, Allerod, Denmark).

Single-cell libraries were generated via the Chromium Controller and the Single Cell 3’ Reagent Kit v3 (10x Genomics, Pleasanton,
CA) according to the manufacturer’s instructions. In total 8,700 cells were loaded onto the Single Cell Chip B for encapsulation into
droplets, aiming to capture ~5000 cells. cDNA was amplified by 12 PCR cycles and a total of 100 ng cDNA was used for library prep-
aration (12 PCR cycles in the index PCR). Amplified libraries were purified using the recommended double-sided size selection (0.6x
and 0.8x), as well as an additional final clean-up step using 1x SPRISelect Beads (Beckman Coulter, Brea, CA) to ensure full removal
of primer and adaptor dimers. Qualitative and quantitative assessments of the final libraries were performed on a 12-channel Frag-
ment Analyzer with the High Sensitivitiy NGS Fragment 1-6000 bp assay (Agilent, Santa Clara, CA), and the Qubit 3.0 Fluorometer
with the 1x dsDNA High Sensitivity kit (Life Technologies, Carlsbad, CA), respectively. Libraries with an average final concentration
of ~30 nM and fragment size of ~450 bp were then normalized, pooled and sequenced on the NextSeq 500 using a 150 cycle Next-
Seq 500 High Output Kit v2.5 (lllumina, San Diego, CA) with the following run set-up parameters: 28/8/0/91, Read1/i7/i5/Read?2.

In vitro stimulation of macrophages

CD68" (anti-human CD68, eBioscience) macrophages were isolated based on FACS from tumor, adjacent liver, ascites and blood of
4 additional HCC patients. Cells were incubated with autologous ascites supernatant plus 10% FBS, and then then subject to RNA-
seq at 0, 24 and 48 hours based on SMART-seq2 protocol. For the 0 hour, 3 replicates of 200 cells from each sample were collected
into lysis buffer based on FACS. For 24 hours and 48 hours, 3 replicates of 10-50 cells from each sample were collected into lysis
buffer by mouth pipette. Constructed libraries were analyzed by an lllumina Hiseq 4000 with 150 bp paired-end reads.

Bulk RNA and DNA isolation and sequencing

Genomic DNA of tissue samples were extracted using the QlAamp DNA Mini Kit (QIAGEN) according to the manufacturer’s speci-
fication. The concentrations of DNA were quantified using NanoDrop instrument (Thermo) and the qualities of DNA were evaluated
with agarose gel electrophoresis. Exon libraries were constructed using the SureSelectXT Target Enrichment System for lllumina
Paired-End Multiplexed Sequencing Library kit (Agilent). Samples were sequenced on the lllumina Hiseq 4000.

For bulk RNA analysis, small fragments of tissues were first stored in RNAlater RNA stabilization reagent (QIAGEN) after surgical
resection and kept on ice to avoid RNA degradation. RNA was extracted using the RNeasy Mini Kit (QIAGEN) according to the man-
ufacturer’s specification. The concentrations of RNA were quantified using the NanoDrop instrument (Thermo) and the qualities of
RNA were evaluated with fragment analyzer (AATI). Libraries were constructed using NEBNext Poly(A) mRNA Magnetic Isolation
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Module kit (NEB) and NEBNext Ultra RNA Library Prep Kit for lllumina Paired-end Multiplexed Sequencing Library (NEB). Samples
were sequenced on the lllumina Hiseq 4000.

Multi-color immunohistochemistry

Human tissue specimens were provided by Beijing Shijitan Hospital under an approved Institutional Review Board protocol. The
specimens were collected within 30 min after the tumor resection and fixed in formalin for 48 hour. Dehydration and embedding
in paraffin was performed following routine methods. These paraffin blocks were cut into 5 um slides and adhered on the slides glass.
Then the paraffin sections were placed in the 70°C paraffin oven for 1 hr before deparaffinized in xylene and then rehydrated in 100%,
90%, 70% alcohol successively. Antigen was retrieved by critic acid buffer (pH 6.0) in the 95°C water bath for 20 min. Endogenous
peroxidase was inactivated by incubation in 3% H,0O, for 15 min. Following a preincubation with 10% normal goat serum to block
nonspecific sites for 30 min, the sections were incubated with primary antibodies in a humidified chamber at 4°C overnight. The pri-
mary antibodies and IHC metrics used in the validation of two distinct macrophage state were: rabbit anti-human CD68 (Abcam,
1:2000), rabbit anti-human SLC40A1 (Abcam, 1:200) and mouse anti-human S100A8 (Abcam, 1:500). The primary antibodies and
IHC metrics used in the validation of the potential physical interaction (co-localization) between LAMP3* DCs and T cell subsets
were: CD3, CD4, CD8, CD80, PD-1 and PD-L1. After the sections were washed with PBS twice for 5 min, the antigenic binding sites
were visualized using the GTVisionTMIIDetection System/Mo&Rb according to the manufacturer’s protocol.

Genetic knockout in THP-1 cells using CRISPR-Cas9

Human monocyte THP-1 cells (ATCC® TIB-202) were transduced with lentivirus encoding Streptococci pyogenus Cas9 (Cas9) by
the spinfection method to generate THP1-Cas9 cells. Briefly, cells were cultured for two weeks in RPMI 1640 (Thermo Fisher) medium
supplemented with 10% fetal bovine serum (FBS), 100 U/ml penicillin and 100 pg/ml streptomycin, 2 mM L-glutamine, 12.5 mM
HEPES (Thermo Fisher) and 0.05 mM B-mercaptoethanol (GIBCO). On the day of transduction, 2.5 x 10° cells were seeded in
each well of a 24-well plate in 500 uL of culture medium. Lentiviral particles were diluted to achieve MOI of 1.0 in 500 uL culture me-
dium supplemented with 8 ng/ml polybrene (EMD Millipore) and mixed with THP1 cells. To spinfect, cells were centrifuged at 800 g for
45 min at 32°C. After 16 —18 hours of incubation at 37°C post spinfection, cells were selected with 10 pg/ml blasticidin for 5 days. To
knockout a specific gene, cells were transduced with dual single-guide RNA (sgRNA) CRoatan constructs targeting GPNMB,
SLC40A1 and VEGFA (Erard et al., 2017). Un-transduced cells were eradicated by maintaining cells under 2 ug/ml puromycin selec-
tion for 5 days.

Knockout efficiency was determined by FACS. To get the highest possible expression of GPNMB, SLC40A1 and VEGFA at the
protein level, THP-1 cells were differentiated into macrophages by 150 nM PMA treatment for 24 hours and then stimulated with
20 ng/ ml lipopolysaccharide (LPS) plus 20 ng/ml y-interferon (IFNvy) for 24 hours. The genetic knockout of surface proteins, GPNMB
and SLC40A1, was measured using a standard surface staining protocol for FACS analysis. To measure knockout efficiency of
secreted factor VEGFA, stimulated THP-1 cells were treated with Golgi Plug and Golgi Stop (BD Biosciences) for 4 hours and intra-
cellular staining was performed using the BD-PermFix protocol. Anti-mouse IgG-AF488 was used as the secondary antibody to stain
anti-VEGFA.

Multiplex cytokine assay using THP-1 cells

Gene edited and THP1-Cas9 (control) cells seeded at the density of 1 x 10° cells in 96-well flat bottom plates were differentiated into
macrophages by 150 nM PMA treatment for 24 hours. Then cells were stimulated with either 100 ng/ml TLR agonist Pam3CSK4 or
20 ng/ml lipopolysaccharide (LPS) plus 20 ng/ml y-interferon (IFNy) for 24 hours, and supernatants from each condition were
collected for analysis. Secreted chemokines and cytokines in these supernatants were quantified using the LEGENDplexTM Human
Macrophage (13-plex) Panel kit (BioLegend) according to the manufacturer’s instructions.

Dendritic cells migration assay

Migratory properties of immature and mature mo-DCs was measured using transwell chemotactic assay with a polycarbonate filter of
5-micron pore size in 24-well transwell chambers (Corning Costar, Cambridge, MA). ImmunoCult-ACF Dendritic Cell medium (Stem-
Cell Technologies) containing 250 ng/ml CCL19 (R&D Systems, #361-MI-025) or medium alone as a control for spontaneous migra-
tion was added to the lower chamber. Approximately 0.5-1 x 10° mo-DCs in 100 uL were added to the upper chamber and were
incubated for 3 hours at 37°C. A 600 uL aliquot of the cells that migrated to the bottom chamber was collected. The surface antigens
of migrated cells were stained with LIVE/DEAD Fixable Green dead cell stain (1:2000, ThermoFisher), HLA-DR-APC (Biolegend,
clonet# L243) and CD83-APC-Cy7 (Biolegend, clone# HB15e). Then cells were subjected to intracellular staining using BD-PermFix
protocol and CD208-PE (1:10; BD Biosciences, clone# 110-1112). Cells were counted using BD CountBright absolute counting beads
and immuno-phenotyped by FACS using BD Canto II.

Single cell RNA-seq data processing

Droplet-based sequencing data were aligned and quantified using the Cell Ranger Single-Cell Software Suite (version 2.3, 10x
Genomics) against the GRCh38 human reference genome. To call real cells from empty droplets, we used the emptyDrops() function
from R package dropletUtils (Lun et al., 2019), which assesses whether the RNA content associated with a cell barcode is significantly
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distinct from the ambient background RNA present within each sample. Cells with p < 0.01 (Benjamini-Hochberg-corrected) were
considered for further analysis. Quality of cells were then assessed based on three metrics step by step: (1) The number of total
UMI counts per cell (library size); (2) The number of detected genes per cell; (3) The proportion of mitochondrial gene counts.
Low-quality cells were filtered if the library size or the number of detected genes (in log10 scale) was below the medians of all cells
minus 3 x the median absolute deviation. Cells were filtered out if the proportion of mitochondrial gene counts was higher than the
median of all cells minus 3 x the median absolute deviation.

We then tried to identify doublets cells following methods as previous described (Pijuan-Sala et al., 2019). Briefly, a doublet score
was computed for each cell by applying the ‘doubletCells’ function (scran R package) to each 10x sample separately. We next iden-
tified clusters of cells in each sample by computing the first 50 principal components across all genes, building a shared nearest-
neighbor graph (10 nearest neighbors; ‘buildSNNGraph’ function; scran R package), and applying the Louvain clustering algorithm
(‘cluster_louvain’ function; igraph R package; default parameters) to it. Only HVGs (calculated separately for each sample) were used
for the clustering. This procedure was repeated in each identified cluster to break the data into smaller clusters, ensuring that small
regions of high doublet density were not clustered with large numbers of singlets. For each cluster, the median doublet score was
considered as a summary of the scores of its cells, as clusters with a high median score were likely to contain mostly doublets.
Doublet calls were made in each sample by considering a null distribution for the scores using a median-centered MAD-variance
normal distribution, separately for each sample. The MAD estimate was calculated only on values above the median to avoid the
effects of zero-truncation, as doublet scores cannot be less than zero. All cells in clusters with a median score at the extreme upper
end of this distribution (Benjamini-Hochberg-corrected p < 0.1) were labeled as doublets. After removing doublet cells, a total of
66,187 cells were retained for downstream analysis.

The size factor of each cell was computed using a pooling strategy implemented in the R function computeSumFactors. Normal-
ized counts were then computed by dividing the counts for each cell by the size factor for that cell. A log2 transformation was applied
to normalized counts.

SMART-seq?2 sequencing data were aligned with STAR, using genome reference hg38 and annotation downloaded from NCI GDC
(Genomic Data Commons) (https://api.gdc.cancer.gov/data/254f697d-310d-4d7d-a27b-27fbf767a834).Gene-specific read counts
were calculated using featureCounts (Liao et al., 2014) with parameters ‘-M -O—fraction -Q 30’. Quality of cells were then assessed
based on three metrics step by step: (1) The number of total counts per cell (library size); (2) The number of detected genes per cell; (3)
The proportion of mitochondrial gene counts. Low-quality cells were filtered if the library size or the number of detected genes was
below the median of all cells minus 3 x the median absolute deviation. We also removed all cells with the proportion of mitochondrial
gene counts higher than 10%. The size factor for each cell was computed using a pooling strategy implemented in the R function
computeSumFactors in scran package. Normalized counts/expression were then computed by dividing the counts for each cell
by the size factor for that cells. A log2 transformation was applied to normalized counts. A total of 7,099 cells were retained for down-
stream analysis.

Processing bulk RNA-seq data

The bulk RNA expression was quantified by kallisito (version 0.44) with the same annotated transcriptome used for droplet-based
data. Gene expression were calculated by aggregating transcript expression (TPM) belonging to the same gene, and the TPM of
gene were then converted to read counts implemented in the R function tximport.

For the mini-bulk SMART-seq2 data of in vitro stimulation of macrophages, same processed as scRNA SMART-seq2 data were
applied. Briefly, reads were aligned with STAR, using genome reference hg38 and annotation downloaded from NCI GDC (Genomic
Data Commons) (https://api.gdc.cancer.gov/data/254f697d-310d-4d7d-a27b-27fbf767a834).Gene-specific read counts were
calculated using featureCounts with parameters ‘-M -O-fraction -Q 30°.

Dimension reduction and unsupervised clustering

To integrate cells into a shared space from different platforms for unsupervised clustering, we used the harmony algorithm (Korsun-
sky et al., 2018) to integrate two datasets (SMART-seq2 and 10x). To detect the most variable genes used for harmony algorithm, we
first fitted a regression trend between the variance of the log, transformed normalized counts and the abundance of each gene using
the trendVar function in scran. Next, we used the decomposeVar function from scran package to compute the biological variation for
each gene (Lun et al., 2016). Genes were ordered based on their biological variation. We used genes with their biological variation >
0and FDR < 0.01 across all samples within the same platform as informative genes for integration. We calculate a PCA matrix with 50
components using such informative genes by MultiBatchPCA() function implemented in scran package. We then feed this PCA matrix
into HarmonyMatrix() function implemented in Harmony R package. As harmony can integrate over multiple covariates, we set donor
and platform as two technical covariates for correction. And the corresponding theta parameter were set as 2 and 4 respectively. The
batch-corrected shared space output by harmony then used to build nearest neighbor graph using scanpy. Such nearest neighbor
graph was used to find clusters by leiden community detection algorithm (Traag et al., 2019), as leiden algorithm is able to yield com-
munities that are guaranteed to be connected compared to louvain algorithm. To identify cluster-specific markers genes, differential
expression testing was performed using the findMarkers function in the scran R package within the same platform. This function per-
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formed pairwise Welch t tests between groups of cells, after blocking on uninteresting factors of variation (here were set as donor).
Genes with the minimum rank across all pairwise comparison less than 30 were considered as cluster-specific markers. Clusters
were annotated based on the expression of known maker genes.

The first round of clustering identified six major cell types including T and NK cells, myeloid cells, B cells, plasma B cells and type
three ILCs. A second round of clustering was performed on T and NK cells to separate T cells and NK cells. To identify clusters within
each major cell type, we performed a third round of clustering on T, NK and myeloid cells respectively. The procedure of the second
and third round of clustering is the same as first round, starting from unfiltered expression matrix, including finding HVGs, calculating
PCA matrix and performing integration analyses by Harmony.

For dimension reduction, we calculated UMAP, diffusion-map and force-directed graph using batch-corrected shared space
output by Harmony (Korsunsky et al., 2018). All reduced dimensions were calculated by scanpy (Wolf et al., 2018). Partition-based
graph abstraction (PAGA) were calculated by scanpy.

Comparing DCs in different cancer types

To compare our scRNA-based dendritic cell transcriptome with FACS-based breast cancer dendritic cell transcriptome (Michea
et al., 2018), we aggregated counts across all cells for each gene in each DC cluster within in each sample to obtain ‘pseudo-
bulk’ samples. For instance, assuming there were 10 cells in the tumor of Donor 1 were identified as LAMP3* DC cells, for each
gene, counts of these 10 cells would be summed up. We then use the EdgeR package to compute log CPM of each gene as normal-
ized gene expression.

For breast cancer dendritic cell transcriptome, we downloaded the original sequence fastq file from SRA PRINA380940. The same
procedure as SMART-seq2 data analysis was applied to the downloaded data to generate counts table. Log CPM of each gene were
calculated as normalized gene expression.

To identify gene signatures associated with particular type of dendritic cell, we performed pairwise comparison across different
types of dendritic cells using the Genewise Negative Binomial Generalized Linear Models with Quasi-likelihood Tests (gImQLFit)
of EdgeR R package. Only differentially expressed genes with FDR of < 0.01 and logFC > Ocompared to all the other types of dendritic
cells were considered as DC cell type-specific signatures.

Pairwise comparison across scRNA-based pseudo-bulk data is also performed to get differentially expressed genes between
each two types of dendritic cells. A self-contained test implemented in mroast function in R limma package was performed to
test whether any gene signatures are enriched in the differentially expressed genes (or tend to be differentially expressed) (Ritchie
et al., 2015).

Cell similarity analysis across tissues

To quantify the cell similarities among different tissues, we projected the combined cell-by-gene expression matrix onto a shared
low-dimensional PC space. We used the union of HVG sets identified within each tissue for PCA projection. For each cell within
each tissue, we query for its nearest neighbor using the R function queryKNN() among cells of all other tissues in the low-dimensional
space spanned by the top 50 PCs. The potential origin of each cell was estimated by the tissue origin of its nearest neighbor cell. To
determine the statistical significance of tissue origin for each cell type, we performed permutation test by randomly shuffling the
tissue labels for all the nearest neighbor cells 1000 times.

TCR analysis

The TCR sequences for each single cell from the Smart-seq2 data were assembled by the TraCeR method (Yusufi et al., 2017), lead-
ing to the identification of the CDR3 sequence, the rearranged TCR genes and their expression abundance (transcripts per million,
TPM). Only in-frame TCR alpha-beta pairs were considered to define the dominant TCR of a single cell. Non-T cells were negative
control here. Each unique dominant alpha-beta pair was defined as a clonotype. If one clonotype was present in at least two cells, this
clonotype would be considered clonal, and the number of cells with such dominant alpha-beta pair indicated the degree of clonality
of the clonotype.

Lineage tracing based on mitochondrial mutation

For SMART-seq2 data, mitochondrial mutations of each cell were determined following Ludwig et al. (2019). Specifically, for each
mitochondrial genome position, the allele frequency (AF) of a base b and the total coverage of this position was computed. For
10x data, we use VarTrix (https://github.com/10XGenomics/vartrix) to calculate the alternative allele frequency and the coverage
of each position in the mitochondrial chromosome.

To build phylogenetic trees based on the mitochondrial mutations, we retained mitochondrial genome position with coverage > 20
and at least 85% cells within the interest cell populations expressed. Because of heteroplasmy of mitochondria genome, a cutoff of
alternative allele frequency > 0.1 was set to identify subclone mutations in the mitochondrial genome. All bases were concatenated
into a unique DNA sequence for each cell. Multiple alignment was then constructed by aligning all sequences by position. After
removing identical sequences, we calculated phylogenetic trees using RAXML with parameters ‘-f a -p 1000 -x 319 -m GTRCAT".
and estimated stable cell lineages (bootstrap value > 30). The lineage relationship reviewed by phylogenetic trees does not reflect
the degree of proliferation. Outgroup of the phylogenetic trees were set using the original reference sequence from hg38.
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RNA velocity-based cell fate tracing

To perform the RNA velocity analysis, the spliced reads and unspliced reads were recounted by the velocyto python package based
on previous aligned bam files of scRNA-seq data. The calculation of RNA velocity values for each gene in each cell and embedding
RNA velocity vector to low-dimension space were done by following the scvelo python pipeline.

We calculated the velocity-based cell transition matrix by transition_matrix() function from scvelo, of which the element was the
Pearson correlation coefficient between the velocity vector and cell state difference vectors of the column cell as previously
described (La Manno et al., 2018). We estimated the destination of a cell by identifying the highest correlation value. Then Fisher’s
exact test was performed on 2x2 cluster-by-cluster or cluster-by-tissue contingency tables to test the fate destinations of interested
cell clusters. To infer the migration directions of macrophages and dendritic cells we first constructed partition-based graph abstrac-
tion for macrophage population and dendritic cell populations respectively, and then oriented edges among cell populations using
RNA velocity information as previously described (Wolf et al., 2019).

Cell-cell interaction analysis

The cell-cell interaction analysis was based on the expression of immune-related receptors and ligands. The gene list contained 168
pairs of well-annotated receptors and ligands, including cytokines, chemokines and co-stimulators (Table S6; Chen and Flies, 2013).
Cell types that had at least 5 cells and occupied > 10% of immune cells from either tumor or adjacent liver tissues were considered.
We estimated the potential interaction between two cell types mediated by a specific ligand-receptor pair by the product of the
average expression levels of the ligand in one cell type and the corresponding receptor in the other cell type. To examine the statis-
tical significance of the estimated interaction intensity, permutations were applied on the cell type tags of individual cells for 1000
times, and the p value was estimated by the number of permutations that had interacting intensity larger than the real value. Adjusted
p value by Bonferroni correction was calculated for multiple testing correction across the hundreds of ligand-receptor pairs. If a pair
of ligand and receptor had a value of interacting intensity larger than 10 (in SMART-seq2 data; in 10x data, the cut-off is 0.38, the
same percentage as SMART-seg2 data), and an adjusted p value less than 0.01 between two cell types, we defined this ligand-
receptor pair as a potential molecular axis mediating interactions between the two cell types. For a given pair of ligand and receptor,
cell types with the average expression level of either the ligand or the receptor less than 1 (log,(Normalized Counts) < 1) were filtered.

TCGA data analysis

The TCGA hepatocellular carcinoma (LIHC) data were used to test the correlation of selected genes and patient survival. The gene
expression data and the clinical data were downloaded from UCSC Xena (http://xena.ucsc.edu/). The feature genes used for MDSC-
like and TAM-like states were based on differentially expressed genes (FDR < 0.01, log, (FC) > 2) of MDCS- / TAM-like macrophages
versus other macrophage subsets. To correct the effect of CD45" cell levels within each sample, the expression of selected genes in
tumor were divided by the expression of PTPRC (CD45). The statistical analysis was performed by GEPIA2 (Tang et al., 2019). For
correlation analysis, LAMP3* DC signatures were based on differentially expressed genes among all DC subsets (Top Rank < 30).
Treg and T exhausted signatures were based on Zheng et al. (2017a). We calculated the mean of the expression (TPM) for all signa-
ture genes as signature score. To correct the effect of CD45* cell levels within each sample, signature score was divided by that of the
expression of PTPRC (CD45). Spearman correlation between signatures were calculated cor() function in R.

DATA AND CODE AVAILABILITY
The accession numbers for the sequencing raw data and processed data in this paper are GSA (Genome Sequence Archive in BIG

Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences): HRA000069 and EGA: EGAS00001003449 respectively.
Analysis of such HCC data can also be found at http://cancer-pku.cn:3838/HCC/.
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Figure S1. Study Design and Basic Information of the Single-Cell RNA-Seq Data Generated by Two Platforms, Related to Figure 1

(A) Scheme of the overall study design. Two technologies (droplet-based 10x Genomics and plate-based SMART-seq2) of scRNA-seq were applied to CD45*
cells and T cell subsets derived from blood, tumor, adjacent liver tissue, LN and ascites, and the output data of two technologies were integrated and combined

for downstream analysis. *, the data have been published in our previous study (Zheng et al., 2017a).

(legend continued on next page)



(B) FACS gating strategy of CD45" cells sorting. For 10x scRNA-seq, we collected cells based on CD45 antibody (upper row). For SMART-seq2 scRNA-seq, we
collected cells based on CD45, CD3 antibodies and cell size information (bottom row).

(C) FACS gating strategy of T cell subsets sorting.

(D) and (E) show the canonical marker genes expression for cell type annotation of patient DSN09 based on SMART-seq2 and 10x data respectively.
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Figure S2. Comparison and Integration of Full-Length and 3’ Single-Cell RNA-Seq Data, Related to Figure 1
(A) Heatmap showing the Jaccard similarity of SMART-seq2 and 10x data in separate cluster (upper), and SMART-seq2 and 10x data in joint clusters (bottom).
Jaccard similarity was calculated using top 500 cell type specific markers.

(legend continued on next page)



(B) Bar plots showing the distribution of SMART-seq2 and 10x clusters in joint clusters. Red lines represent 10x-specific clusters, and blue lines represent
SMART-seq2-specific clusters.

(C) LAMP3 expression of joint clusters.

(D) Bar plots showing number of detected genes in each cluster.

(E) Gene ontology (Biology process) term numbers generated by the differentially expressed genes of 10x and SMART-seq2 data respectively.
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Figure S3. Cluster Characterization of the Global Landscape and T Cells Based on 10x and SMART-seq2 Data, Related to Figure 1
(A) Expression of canonical marker genes for cell type annotation based on SMART-seq2 data.
(B) Expression of canonical marker genes for cell type annotation based on 10x data.

(C) Bar plots showing different tissue enriched populations, together with “healthy liver” controls (P1TLH, P4TLH and P5TLH) (MacParland et al., 2018).
(

(

D) The UMAP projection of T cells based on SMART-seq?2 data. Each dot represents an individual cell.
E) RNA velocities are visualized on the UMAP projection of CD8-c1-MKI67 and CD8-c7-PDCD1 populations, colored by clusters.
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Figure S4. Cluster Characterization of NK and Myeloid Cells Based on SMART-seq2 and 10x Data, Related to Figures 2 and 3

(A) The UMAP projection of NK cells, showing the formation of 9 sub-clusters. Each dot represents an individual cell, colored according to cell cluster number.
(B) The UMAP plot showing the expression of cytotoxic genes in NK cell populations (GZMK, GZMA, IFNG and TNF).

(C) Differentially expressed genes between circulating NK cells (NK-c3-IFNG and NK-c4-IFNG-HSPA1A) and liver-resident NK cells (NK-c7-CD160 and NK-c8-
CD160-HSPA1A). Red dots are significant genes (log, (FC) > 1, FDR < 0.01).

(D) Boxplot of marker gene expression in cNK and IrNK clusters.

(E) The UMAP projection of myeloid cell clusters, showing the formation of 14 clusters. Each dot represents an individual cell, colored according to cell cluster
number.

(F) The UMAP plots showing the expression of signature genes in myeloid cell populations.

(G) TCR sharing between cell clusters in tumor or adjacent liver tissues, and cells in ascites. Rows represent different clonotypes, and columns represent different
cell clusters or tissues.

(H) Branches of phylogenetic trees of proliferative T cells in ascites and tumor constructed by mitochondrial mutations. Venn diagram shows the number of stable
lineages (Bootstrap > 30).
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Figure S5. CRISPR Knockout of THP-1 Cells and Validation of the Existence of LAMP3* Population in HCC, Related to Figures 2, 3, and 4
(A) Bar plot showing the expression similarity (measured by Spearman correlation) of macrophages from different tissues to those from ascites with in vitro
stimulation by autologous ascites supernatant.
(B) FACS analysis showing the knockout efficacy of three genes SLC40A1, GPNMB and VEGFA in THP-1 cells.

(C) Heatmap showing the cytokine alteration after CRISPR knockout in (B), compared with unedited-control (Student’s t test).
(D) FACS gating strategy of DC subsets from tumor and adjacent liver tissues of HCC patients.
(E) FACS analysis showing the higher expression of CCR7 and CD80 in LAMP3* DCs than cDC1 and cDC2.

(F) Dot plot showing the higher proportion of LAMP3* DCs in tumors than adjacent liver tissues. *p < 0.05; **p < 0.01; ***p < 0.001; Student’s t test.

(legend continued on next page)



(G) The left plot shows the enrichment of up/downregulated genes of different DC subset pairs in our data in those DC subsets generated based on FACS
(Michea et al., 2018). The bubble size represents the proportion of genes in the gene signature (y axis) expressed in the corresponding cell subsets (x axis), and the
color bar represents the p value of the enrichment/depletion. The right heatmap shows the signature genes of each cluster of the two datasets (HCC and breast
cancer).
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Figure S6. In Vitro Experiment Showing the Maturation and Migration Properties of DC Subsets, Related to Figure 4, 5, and 6
(A) FACS gating strategy of DC subsets from PBMCs of healthy donors, showing no expression of LAMP3.
(B) Histograms showing the expression of LAMPS3 in different DC subsets after in vitro stimulations (LPS+IFNvy or Polyl:C).

(legend continued on next page)



(C) LAMP3 expression in mo-DC subsets under different stimuli conditions.

(D) UMAP plots showing the expression of signature genes based on literature (Villani et al., 2017) in PBMC-derived DCs with/without stimulations.

(E) The expression relationship of LAMP3 with cDC1 marker genes CLEC9A, XCR1 and CADM1 from in vitro DC scRNA-seq.

(F) Transwell experiment design.

(G) The LAMP3 expression is positively associated with the number of migrated cells in the migration assay of (F) (Pearson’s correlation analysis).

(H) LAMP3 is highly expressed in CD83" migrated cells (Student’s t test).

(I) TCR sharing between cell clusters in tumor and adjacent liver tissues and cells in LN. Rows represent different clonotypes, and columns represent different cell
clusters or tissues.
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Figure S7. Predicted Cell-Cell Interactions Based on Ligand-Receptor Interactions, Related to Figure 7

(A) Number of ligands and receptors involving in significant ligand-receptor pairs for each cell cluster based on 10x data.

(B) Circos plots showing the predicted cell-cell interactions of CD80-CTLA4 and CD80-CD28, CCL19-CCR7, CCL22-CCR4, PDCD1LG2-PDCD1 axes among
different clusters.

(C) Correlation of the LAMP3* DC gene signature with that of cytotoxic T cells based on TCGA LIHC data, normalized by CD45 expression. Each dot represents a
patient (Pearson’s correlation analysis).

(D) Multicolor IHC staining to validate the interaction pairs of PD-L1 and PD-1 in LAMP3* DCs and CD8*/CD4* T cells, exemplified by patient DEJ10 and DEJ16.
The scale bar represents 30 um.
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